
JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 1 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING

UNIT-I

L 1.2

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 2 Dr.Venkateswarulu, Assoc Prof

Java History

• Computer language innovation and development

occurs for two fundamental reasons:

1) to adapt to changing environments and uses

2) to implement improvements in the art of

programming

• The development of Java was driven by both in equal

measures.

• Many Java features are inherited from the earlier

L 1.3

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 3 Dr.Venkateswarulu, Assoc Prof

languages:

B C C++ Java

L 1.4

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 4 Dr.Venkateswarulu, Assoc Prof

Before Java: C

• Designed by Dennis Ritchie in 1970s.

• Before C: BASIC, COBOL, FORTRAN, PASCAL

• C- structured, efficient, high-level language that could
replace assembly code when creating systems
programs.

• Designed, implemented and tested by programmers.

L 1.5

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 5 Dr.Venkateswarulu, Assoc Prof

Before Java: C++

• Designed by Bjarne Stroustrup in 1979.

• Response to the increased complexity of programs and
respective improvements in the programming
paradigms and methods:

1) assembler languages

2) high-level languages

3) structured programming

4) object-oriented programming (OOP)

• OOP – methodology that helps organize complex
programs through the use of inheritance,
encapsulation and polymorphism.

• C++ extends C by adding object-oriented features.

L 1.6

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 6 Dr.Venkateswarulu, Assoc Prof

Java: History

• In 1990, Sun Microsystems started a project called
Green.

• Objective: to develop software for consumer electronics.

• Project was assigned to James Gosling, a veteran of
classic network software design. Others included Patrick
Naughton, ChrisWarth, Ed Frank, and Mike Sheridan.

• The team started writing programs in C++ for embedding
into

– toasters

– washing machines

– VCR’s

• Aim was to make these appliances more “intelligent”.

L 1.7

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 7 Dr.Venkateswarulu, Assoc Prof

Java: History (contd.)

• C++ is powerful, but also dangerous. The power and
popularity of C derived from the extensive use of pointers.
However, any incorrect use of pointers can cause memory
leaks, leading the program to crash.

• In a complex program, such memory leaks are often hard
to detect.

• Robustness is essential. Users have come to expect that
Windows may crash or that a program running under
Windows may crash. (“This program has performed an
illegal operation and will be shut down”)

• However, users do not expect toasters to crash, or
washing machines to crash.

• A design for consumer electronics has to be robust.

• Replacing pointers by references, and automating memory
management was the proposed solution.

L 1.8

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 8 Dr.Venkateswarulu, Assoc Prof

Java: History (contd.)

• Hence, the team built a new programming language called Oak,
which avoided potentially dangerous constructs in C++, such
as pointers, pointer arithmetic, operator overloading etc.

• Introduced automatic memory management, freeing the
programmer to concentrate on other things.

• Architecture neutrality (Platform independence)

• Many different CPU’s are used as controllers. Hardware chips
are evolving rapidly. As better chips become available, older
chips become obsolete and their production is stopped.
Manufacturers of toasters and washing machines would like to
use the chips available off the shelf, and would not like to
reinvest in compiler development every two-three years.

• So, the software and programming language had to be
architecture neutral.

L 1.9

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 9 Dr.Venkateswarulu, Assoc Prof

Java: History (contd)

• It was soon realized that these design goals of consumer electronics

perfectly suited an ideal programming language for the Internet and WWW,
which should be:

 object-oriented (& support GUI)

 – robust

 – architecture neutral

• Internet programming presented a BIG business opportunity. Much bigger
than programming for consumer electronics.

• Java was “re-targeted” for the Internet

• The team was expanded to include Bill Joy (developer of Unix), Arthur van
Hoff, Jonathan Payne, Frank Yellin, Tim Lindholm etc.

• In 1994, an early web browser called WebRunner was written in Oak.
WebRunner was later renamed HotJava.

• In 1995, Oak was renamed Java.

• A common story is that the name Java relates to the place from where the
development team got its coffee. The name Java survived the trade mark

L
1.10

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 10 Dr.Venkateswarulu, Assoc Prof

search.

L
1.11

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 11 Dr.Venkateswarulu, Assoc Prof

Java History

• Designed by James Gosling, Patrick Naughton,
Chris Warth, Ed Frank and Mike Sheridan at Sun
Microsystems in 1991.

• The original motivation is not Internet: platform-
independent software embedded in consumer
electronics devices.

• With Internet, the urgent need appeared to break the
fortified positions of Intel, Macintosh and Unix
programmer communities.

• Java as an “Internet version of C++”? No.
• Java was not designed to replace C++, but to solve a

L
1.12

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 12 Dr.Venkateswarulu, Assoc Prof

different set of problems.

L
1.13

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 13 Dr.Venkateswarulu, Assoc Prof

The Java Buzzwords

• The key considerations were summed up by the Java

team in the following list of buzzwords:
 Simple

 Secure

 Portable

 Object-oriented

 Robust

 Multithreaded

 Architecture-neutral

 Interpreted

 High performance

 Distributed

L
1.14

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 14 Dr.Venkateswarulu, Assoc Prof

 Dynamic

L 1.10

JAVA PROGRAMMING (CS2205PC)

• simple – Java is designed to be easy for the professional
programmer to learn and use.

• object-oriented: a clean, usable, pragmatic approach to
objects, not restricted by the need for compatibility with
other languages.

• Robust: restricts the programmer to find the mistakes
early, performs compile-time (strong typing) and run-time
(exception-handling) checks, manages memory
automatically.

• Multithreaded: supports multi-threaded programming for
writing program that perform concurrent computations

L 1.16

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 16 Dr.Venkateswarulu, Assoc Prof

• Architecture-neutral: Java Virtual Machine

provides a platform independent environment for the

execution of Java byte code

• Interpreted and high-performance: Java programs

are compiled into an intermediate representation –

byte code:

a) can be later interpreted by any JVM

b) can be also translated into the native machine

code for efficiency.

L 1.17

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 17 Dr.Venkateswarulu, Assoc Prof

• Distributed: Java handles TCP/IP protocols,

accessing a resource through its URL much like

accessing a local file.

• Dynamic: substantial amounts of run-time type

information to verify and resolve access to

objects at run-time.

• Secure: programs are confined to the Java

execution environment and cannot access other

parts of the computer.

L 1.18

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 18 Dr.Venkateswarulu, Assoc Prof

• Portability: Many types of computers and
operating systems are in use throughout the
world—and many are connected to the Internet.

• For programs to be dynamically downloaded to
all the various types of platforms connected to
the Internet, some means of generating portable
executable code is needed. The same
mechanism that helps ensure security also helps
create portability.

• Indeed, Java's solution to these two problems is

L 1.19

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 19 Dr.Venkateswarulu, Assoc Prof

both elegant and efficient.

L 1.20

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 20 Dr.Venkateswarulu, Assoc Prof

Data Types

• Java defines eight simple types:

1)byte – 8-bit integer type

2)short – 16-bit integer type

3)int – 32-bit integer type

4)long – 64-bit integer type

5)float – 32-bit floating-point type

6)double – 64-bit floating-point type

7)char – symbols in a character set

8)boolean – logical values true and false

L 1.21

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 21 Dr.Venkateswarulu, Assoc Prof

• byte: 8-bit integer type.

Range: -128 to 127.

Example: byte b = -15;

Usage: particularly when working with data
streams.

• short: 16-bit integer type.

Range: -32768 to 32767.

Example: short c = 1000;

Usage: probably the least used simple type.

L 1.22

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 22 Dr.Venkateswarulu, Assoc Prof

• int: 32-bit integer type.

Range: -2147483648 to 2147483647.

Example: int b = -50000;

Usage:

1) Most common integer type.

2) Typically used to control loops and to index
arrays.

3) Expressions involving the byte, short and int
values are promoted to int before calculation.

L 1.23

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 23 Dr.Venkateswarulu, Assoc Prof

• long: 64-bit integer type.
Range: -9223372036854775808 to

9223372036854775807.

Example: long l = 10000000000000000;
Usage: 1) useful when int type is not large enough to

hold the desired value

• float: 32-bit floating-point number.

Range: 1.4e-045 to 3.4e+038.

Example: float f = 1.5;

Usage:

L 1.24

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 24 Dr.Venkateswarulu, Assoc Prof

1) fractional part is needed

2) large degree of precision is not required

L 1.25

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 25 Dr.Venkateswarulu, Assoc Prof

• double: 64-bit floating-point number.

Range: 4.9e-324 to 1.8e+308.

Example: double pi = 3.1416;

Usage:

1) accuracy over many iterative calculations

2) manipulation of large-valued numbers

L 1.26

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 26 Dr.Venkateswarulu, Assoc Prof

char: 16-bit data type used to store characters.

Range: 0 to 65536.

Example: char c = ‘a’;
Usage:

1) Represents both ASCII and Unicode character

sets; Unicode defines a

character set with characters found in (almost) all

human languages.

2) Not the same as in C/C++ where char is 8-bit

L 1.27

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 27 Dr.Venkateswarulu, Assoc Prof

and represents ASCII only.

L 1.20

JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 28 Dr.Venkateswarulu, Assoc Prof

• boolean: Two-valued type of logical values.

Range: values true and false.

Example: boolean b = (1<2);

Usage:

1) returned by relational operators, such as

1<2

2) required by branching expressions such

as if or for

L 2.1

JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 29 Dr.Venkateswarulu, Assoc Prof

Variables

• declaration – how to assign a type to a variable

• initialization – how to give an initial value to a variable

• scope – how the variable is visible to other parts of the
program

• lifetime – how the variable is created, used and destroyed

• type conversion – how Java handles automatic type
conversion

• type casting – how the type of a variable can be narrowed
down

L 2.1

JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 30 Dr.Venkateswarulu, Assoc Prof

• type promotion – how the type of a variable can be
expanded

L
2.31

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 31 Dr.Venkateswarulu, Assoc Prof

Variables

• Java uses variables to store data.

• To allocate memory space for a variable JVM

requires:

1) to specify the data type of the variable

2) to associate an identifier with the variable

3) optionally, the variable may be assigned an

initial value

L
2.32

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 32 Dr.Venkateswarulu, Assoc Prof

• All done as part of variable declaration.

L
2.33

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 33 Dr.Venkateswarulu, Assoc Prof

Basic Variable Declaration

• datatype identifier [=value];

• datatype must be

– A simple datatype

– User defined datatype (class type)

• Identifier is a recognizable name confirm

to identifier rules

• Value is an optional initial value.

L
2.34

 JAVA PROGRAMMING (CS2205PC)

Dept of CSE, NRCM 34 Dr.Venkateswarulu, Assoc Prof

Variable Declaration

• We can declare several variables at the same time:

type identifier [=value][, identifier [=value] …];
Examples:

int a, b, c;

int d = 3, e, f = 5;

byte g = 22;

double pi = 3.14159;

char ch = 'x';

Dept of CSE, NRCM 35 Dr.Venkateswarulu, Assoc Prof

Variable Scope

• Scope determines the visibility of program elements with
respect to other program elements.

• In Java, scope is defined separately for classes and methods:
1) variables defined by a class have a global scope

2) variables defined by a method have a local scope

A scope is defined by a block:

{

…

}

A variable declared inside the scope is not visible outside:

{

int n;

Dept of CSE, NRCM 36 Dr.Venkateswarulu, Assoc Prof

}

n = 1;// this is illegal

L 2.5

L
2.37

Dept of CSE, NRCM 37 Dr.Venkateswarulu, Assoc Prof

Variable Lifetime

• Variables are created when their scope is

entered by control flow and destroyed when their
scope is left:

• A variable declared in a method will not hold its
value between different invocations of this
method.

• A variable declared in a block looses its value
when the block is left.

• Initialized in a block, a variable will be re-
initialized with every re-entry. Variables lifetime

L
2.38

Dept of CSE, NRCM 38 Dr.Venkateswarulu, Assoc Prof

is confined to its scope!

L
2.39

Dept of CSE, NRCM 39 Dr.Venkateswarulu, Assoc Prof

Arrays

• An array is a group of liked-typed variables referred to
by a common

• name, with individual variables accessed by their
index.

• Arrays are:

1) declared

2) created

3) initialized

4) used

• Also, arrays can have one or several dimensions.

L
2.40

Dept of CSE, NRCM 40 Dr.Venkateswarulu, Assoc Prof

Array Declaration

• Array declaration involves:

1) declaring an array identifier

2) declaring the number of dimensions

3) declaring the data type of the array elements

• Two styles of array declaration:

type array-variable[];

or

type [] array-variable;

L
2.41

Dept of CSE, NRCM 41 Dr.Venkateswarulu, Assoc Prof

Array Creation

• After declaration, no array actually exists.

• In order to create an array, we use the new

operator:

type array-variable[];

array-variable = new type[size];

• This creates a new array to hold size elements

of type type, which reference will be kept in the

variable array-variable.

L 2.10

Dept of CSE, NRCM 42 Dr.Venkateswarulu, Assoc Prof

Array Indexing

• Later we can refer to the elements of this

array through their indexes:

• array-variable[index]

• The array index always starts with zero!

• The Java run-time system makes sure that
all array indexes are in the correct range,
otherwise raises a run-time error.

L 2.43

Dept of CSE, NRCM 43 Dr.Venkateswarulu, Assoc Prof

Array Initialization

• Arrays can be initialized when they are

declared:

• int monthDays[] =

{31,28,31,30,31,30,31,31,30,31,30,31};

• Note:

1) there is no need to use the new operator

2) the array is created large enough to hold all

specified elements

L 2.44

Dept of CSE, NRCM 44 Dr.Venkateswarulu, Assoc Prof

Multidimensional Arrays

• Multidimensional arrays are arrays of arrays:

1) declaration: int array[][];

2) creation: int array = new int[2][3];

3) initialization

int array[][] = { {1, 2, 3}, {4, 5, 6} };

L 2.45

Dept of CSE, NRCM 45 Dr.Venkateswarulu, Assoc Prof

Operators Types

• Java operators are used to build value

expressions.

• Java provides a rich set of operators:

1) assignment

2) arithmetic

3) relational

4) logical

5) bitwise

L 2.46

Dept of CSE, NRCM 46 Dr.Venkateswarulu, Assoc Prof

Arithmetic assignments

+= v += expr; v = v + expr ;

-= v -=expr; v = v - expr ;

*= v *= expr; v = v * expr ;

/= v /= expr; v = v / expr ;

%= v %= expr; v = v % expr ;

L 2.47

Dept of CSE, NRCM 47 Dr.Venkateswarulu, Assoc Prof

Basic Arithmetic Operators

+ op1 + op2 ADD

- op1 - op2 SUBSTRACT

* op1 * op2 MULTIPLY

/ op1 / op2 DIVISION

% op1 % op2 REMAINDER

L 2.48

Dept of CSE, NRCM 48 Dr.Venkateswarulu, Assoc Prof

Relational operator

== Equals to Apply to any type

!= Not equals to Apply to any type

> Greater than Apply to numerical type

< Less than Apply to numerical type

>= Greater than or equal Apply to numerical type

<= Less than or equal Apply to numerical type

L 2.49

Dept of CSE, NRCM 49 Dr.Venkateswarulu, Assoc Prof

Logical operators

& op1 & op2 Logical AND

| op1 | op2 Logical OR

&& op1 && op2 Short-circuit

AND

|| op1 || op2 Short-circuit OR

! ! op Logical NOT

^ op1 ^ op2 Logical XOR

L 2.50

Dept of CSE, NRCM 50 Dr.Venkateswarulu, Assoc Prof

Bit wise operators

~ ~op Inverts all bits

& op1 & op2 Produces 1 bit if both operands are 1

| op1 |op2 Produces 1 bit if either operand is 1

^ op1 ^ op2 Produces 1 bit if exactly one operand is 1

>> op1 >> op2 Shifts all bits in op1 right by the value of

op2

<< op1 << op2 Shifts all bits in op1 left by the value of

op2

L 2.51

Dept of CSE, NRCM 51 Dr.Venkateswarulu, Assoc Prof

Expressions

• An expression is a construct made up of variables,
operators, and method invocations, which are
constructed according to the syntax of the language, that
evaluates to a single value.

• Examples of expressions are in bold below:

int number = 0;

anArray[0] = 100;
System.out.println ("Element 1 at index 0: " +

anArray[0]);

int result = 1 + 2; // result is now 3 if(value1 ==
value2)

System.out.println("value1 == value2");

L
2.520

Dept of CSE, NRCM 52 Dr.Venkateswarulu, Assoc Prof

Expressions

• The data type of the value returned by an expression depends on

the elements used in the expression.

• The expression number = 0 returns an int because the
assignment operator returns a value of the same data type as its
left-hand operand; in this case, number is an int.

• As you can see from the other expressions, an expression can
return other types of values as well, such as boolean or String.

• The Java programming language allows you to construct
compound expressions from various smaller expressions as long
as the data type required by one part of the expression matches
the data type of the other.

• Here's an example of a compound expression: 1 * 2 * 3

L
53.1

Dept of CSE, NRCM 53 Dr.Venkateswarulu, Assoc Prof

Control Statements

• Java control statements cause the flow of execution

to advance and branch based on the changes to the
state of the program.

• Control statements are divided into three groups:

• 1) selection statements allow the program to choose
different parts of the execution based on the
outcome of an expression

• 2) iteration statements enable program execution to
repeat one or more statements

• 3) jump statements enable your program to execute
in a non-linear fashion

L
3.54

Dept of CSE, NRCM 54 Dr.Venkateswarulu, Assoc Prof

Selection Statements

• Java selection statements allow to control the

flow of program’s execution based upon

conditions known only during run-time.

• Java provides four selection statements:

1) if

2) if-else

3) if-else-if

4) switch

L
3.55

Dept of CSE, NRCM 55 Dr.Venkateswarulu, Assoc Prof

Iteration Statements

• Java iteration statements enable repeated
execution of part of a program until a certain
termination condition becomes true.

• Java provides three iteration statements:

1) while

2) do-while

3) for

L
3.56

Dept of CSE, NRCM 56 Dr.Venkateswarulu, Assoc Prof

Jump Statements

• Java jump statements enable transfer of

control to other parts of program.

• Java provides three jump statements:

1) break

2) continue

3) return

• In addition, Java supports exception
handling that can also alter the control flow
of a program.

L
3.57

Dept of CSE, NRCM 57 Dr.Venkateswarulu, Assoc Prof

• Size Direction of Data Type

– Widening Type Conversion (Casting down)

• Smaller Data Type Larger Data Type

– Narrowing Type Conversion (Casting up)

• Larger Data Type Smaller Data Type

• Conversion done in two ways

– Implicit type conversion

• Carried out by compiler automatically

– Explicit type conversion

• Carried out by programmer using casting

Type Conversion

Dept of CSE, NRCM 58 Dr.Venkateswarulu, Assoc Prof

• Widening Type Converstion

– Implicit conversion by compiler automatically

byte -> short, int, long, float, double

short -> int, long, float, double

char -> int, long, float, double

int -> long, float, double

long -> float, double

float -> double

L 3.6

Type Conversion

Dept of CSE, NRCM 59 Dr.Venkateswarulu, Assoc Prof

• Narrowing Type Conversion

– Programmer should describe the conversion

explicitly

byte -> char

short -> byte, char

char -> byte, short

int -> byte, short, char

long -> byte, short, char, int

float -> byte, short, char, int, long

double -> byte, short, char, int, long, float

L 3.7

Type Conversion

L
3.60

Dept of CSE, NRCM 60 Dr.Venkateswarulu, Assoc Prof

Type Conversion

• byte and short are always promoted to int

• if one operand is long, the whole

expression is promoted to long

• if one operand is float, the entire

expression is promoted to float

• if any operand is double, the result is

double

L
3.61

Dept of CSE, NRCM 61 Dr.Venkateswarulu, Assoc Prof

Type Casting

• General form: (targetType) value

• Examples:
• 1) integer value will be reduced module

bytes range:

int i;

byte b = (byte) i;

• 2) floating-point value will be truncated to
integer value:

float f;

int i = (int) f;

4.1

Dept of CSE, NRCM 62 Dr.Venkateswarulu, Assoc Prof

Simple Java Program

• A class to display a simple message:

class MyProgram

{

public static void main(String[] args)

{

System.out.println(“First Java program.");

}

}

L
4.63

Dept of CSE, NRCM 63 Dr.Venkateswarulu, Assoc Prof

What is an Object?

• Real world objects are things that have:

1) state

2) behavior

Example: your dog:

• state – name, color, breed, sits?, barks?, wages
tail?, runs?

• behavior – sitting, barking, waging tail, running

• A software object is a bundle of variables (state)
and methods (operations).

L
4.64

Dept of CSE, NRCM 64 Dr.Venkateswarulu, Assoc Prof

What is a Class?

• A class is a blueprint that defines the

variables and methods common to all
objects of a certain kind.

• Example: ‘your dog’ is a object of the class
Dog.

• An object holds values for the variables
defines in the class.

• An object is called an instance of the
Class

L
4.65

Dept of CSE, NRCM 65 Dr.Venkateswarulu, Assoc Prof

Object Creation

• A variable is declared to refer to the objects of

type/class String:

String s;

• The value of s is null; it does not yet refer to any
object.

• A new String object is created in memory with
initial “abc” value:

• String s = new String(“abc”);
• Now s contains the address of this new object.

L
4.66

Dept of CSE, NRCM 66 Dr.Venkateswarulu, Assoc Prof

Object Destruction

• A program accumulates memory through its

execution.

• Two mechanism to free memory that is no longer
need by the program:

1) manual – done in C/C++

2) automatic – done in Java

• In Java, when an object is no longer accessible
through any variable, it is eventually removed from
the memory by the garbage collector.

• Garbage collector is parts of the Java Run-Time
Environment.

L
4.67

Dept of CSE, NRCM 67 Dr.Venkateswarulu, Assoc Prof

Class

• A basis for the Java language.

• Each concept we wish to describe in Java

must be included inside a class.

• A class defines a new data type, whose

values are objects:

• A class is a template for objects

• An object is an instance of a class

L
4.68

Dept of CSE, NRCM 68 Dr.Venkateswarulu, Assoc Prof

Class Definition

• A class contains a name, several variable declarations

(instance variables) and several method declarations. All
are called members of the class.

• General form of a class:

class classname {

type instance-variable-1;

…

type instance-variable-n;

type method-name-1(parameter-list) { … }

type method-name-2(parameter-list) { … }

…

type method-name-m(parameter-list) { … }
}

L
4.69

Dept of CSE, NRCM 69 Dr.Venkateswarulu, Assoc Prof

Example: Class Usage

class Box {

double width;

double height;

double depth;

}

class BoxDemo {

public static void main(String args[]) {

Box mybox = new Box();

double vol;

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

vol = mybox.width * mybox.height * mybox.depth;

System.out.println ("Volume is " + vol);

L
4.70

Dept of CSE, NRCM 70 Dr.Venkateswarulu, Assoc Prof

} }

L 5.1

Dept of CSE, NRCM 71 Dr.Venkateswarulu, Assoc Prof

Constructor

• A constructor initializes the instance variables of an object.

• It is called immediately after the object is created but
before the new operator completes.

1) it is syntactically similar to a method:

2) it has the same name as the name of its class

3) it is written without return type; the default
return type of a class

• constructor is the same class

• When the class has no constructor, the default constructor
automatically initializes all its instance variables with zero.

L
5.72

 Dept of CSE, NRCM 72 Dr.Venkateswarulu, Assoc Prof

Example: Constructor

class Box {

double width;

double height;

double depth;

Box() {

System.out.println("Constructing Box");

width = 10; height = 10; depth = 10;

}

double volume() {

return width * height * depth;

}

L
5.73

 Dept of CSE, NRCM 73 Dr.Venkateswarulu, Assoc Prof

}

L
5.74

 Dept of CSE, NRCM 74 Dr.Venkateswarulu, Assoc Prof

Parameterized Constructor

class Box {

double width;

double height;

double depth;

Box(double w, double h, double d) {

width = w; height = h; depth = d;

}

double volume()

{ return width * height * depth;

}

L
5.75

 Dept of CSE, NRCM 75 Dr.Venkateswarulu, Assoc Prof

}

L
5.76

 Dept of CSE, NRCM 76 Dr.Venkateswarulu, Assoc Prof

Methods

• General form of a method definition:

type name(parameter-list) {

… return value;

…

}

• Components:

1) type - type of values returned by the method. If a
method does not return any value, its return type must
be void.

2) name is the name of the method

3) parameter-list is a sequence of type-identifier lists
separated by commas
4) return value indicates what value is returned by the

L
5.77

 Dept of CSE, NRCM 77 Dr.Venkateswarulu, Assoc Prof

method.

L
5.78

 Dept of CSE, NRCM 78 Dr.Venkateswarulu, Assoc Prof

Example: Method

• Classes declare methods to hide their internal data
structures, as well as for their own internal use: Within
a class, we can refer directly to its member variables:

class Box {

double width, height, depth;

void volume() {

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

L
5.79

 Dept of CSE, NRCM 79 Dr.Venkateswarulu, Assoc Prof

Parameterized Method

• Parameters increase generality and applicability

of a method:

• 1) method without parameters

int square() { return 10*10; }

• 2) method with parameters

int square(int i) { return i*i; }

• Parameter: a variable receiving value at the time
the method is invoked.

• Argument: a value passed to the method when it
is invoked.

L 6.1

Dept of CSE, NRCM 80 Dr.Venkateswarulu, Assoc Prof

Access Control: Data Hiding and

Encapsulation
• Java provides control over the visibility of variables

and methods.

• Encapsulation, safely sealing data within the
capsule of the class Prevents programmers from
relying on details of class implementation, so you
can update without worry

• Helps in protecting against accidental or wrong
usage.

• Keeps code elegant and clean (easier to maintain)

L
6.81

Dept of CSE, NRCM 81 Dr.Venkateswarulu, Assoc Prof

Access Modifiers: Public, Private,

Protected

• Public: keyword applied to a class, makes it
available/visible everywhere. Applied to a
method or variable, completely visible.

• Default(No visibility modifier is specified): it
behaves like public in its package and
private in other packages.

• Default Public keyword applied to a class,
makes it available/visible everywhere.
Applied to a method or variable, completely
visible.

L
6.82

Dept of CSE, NRCM 82 Dr.Venkateswarulu, Assoc Prof

• Private fields or methods for a class only
visible within that class. Private members
are not visible within subclasses, and are
not inherited.

• Protected members of a class are visible
within the class, subclasses and also
within all classes that are in the same
package as that class.

L
6.83

Dept of CSE, NRCM 83 Dr.Venkateswarulu, Assoc Prof

Visibility

public class Circle {

private double x,y,r;

// Constructor

public Circle (double x, double y, double r) {

this.x = x;

this.y = y;

this.r = r;

}

//Methods to return circumference and area

public double circumference() { return 2*3.14*r;}

public double area() { return 3.14 * r * r; }

}

L
6.84

Dept of CSE, NRCM 84 Dr.Venkateswarulu, Assoc Prof

Keyword this

• Can be used by any object to refer to

itself in any class method

• Typically used to

– Avoid variable name collisions

– Pass the receiver as an argument

– Chain constructors

L
6.85

Dept of CSE, NRCM 85 Dr.Venkateswarulu, Assoc Prof

Keyword this

• Keyword this allows a method to refer to the

object that invoked it.

• It can be used inside any method to refer to the

current object:

Box(double width, double height, double depth) {

this.width = width;

this.height = height;

this.depth = depth;

}

L
6.86

Dept of CSE, NRCM 86 Dr.Venkateswarulu, Assoc Prof

Garbage Collection

• Garbage collection is a mechanism to remove objects

from memory when they are no longer needed.

• Garbage collection is carried out by the garbage
collector:

• 1) The garbage collector keeps track of how many
references an object has.

• 2) It removes an object from memory when it has no
longer any references.

• 3) Thereafter, the memory occupied by the object can be
allocated again.

• 4) The garbage collector invokes the finalize method.

L
6.87

Dept of CSE, NRCM 87 Dr.Venkateswarulu, Assoc Prof

finalize() Method

• A constructor helps to initialize an object just

after it has been created.

• In contrast, the finalize method is invoked just
before the object is destroyed:

• 1) implemented inside a class as:

protected void finalize() { … }

• 2) implemented when the usual way of removing
objects from memory is insufficient, and some
special actions has to be carried out

L 7.1

Dept of CSE, NRCM 88 Dr.Venkateswarulu, Assoc Prof

Method Overloading

• It is legal for a class to have two or more
methods with the same name.

• However, Java has to be able to uniquely
associate the invocation of a method with its
definition relying on the number and types of
arguments.

• Therefore the same-named methods must be
distinguished:

• 1) by the number of arguments, or

• 2) by the types of arguments
• Overloading and inheritance are two ways to

L 7.1

Dept of CSE, NRCM 89 Dr.Venkateswarulu, Assoc Prof

implement polymorphism.

L
7.90

Dept of CSE, NRCM 90 Dr.Venkateswarulu, Assoc Prof

Example: Overloading

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

void test(int a) {

System.out.println("a: " + a);

}

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

double test(double a) {

System.out.println("double a: " + a); return a*a;

}

L
7.91

Dept of CSE, NRCM 91 Dr.Venkateswarulu, Assoc Prof

}

L
7.92

Dept of CSE, NRCM 92 Dr.Venkateswarulu, Assoc Prof

Constructor Overloading

class Box {

double width, height, depth;

Box(double w, double h, double d) {

width = w; height = h; depth = d;

}

Box() {

width = -1; height = -1; depth = -1;

}

Box(double len) {

width = height = depth = len;

}

double volume() { return width * height * depth; }

L
7.93

Dept of CSE, NRCM 93 Dr.Venkateswarulu, Assoc Prof

}

L
7.94

Dept of CSE, NRCM 94 Dr.Venkateswarulu, Assoc Prof

Parameter Passing

• Two types of variables:

1) simple types

2) class types
• Two corresponding ways of how the arguments

are passed to methods:

• 1) by value a method receives a cope of the
original value; parameters of simple types

• 2) by reference a method receives the memory
address of the original value, not the value itself;
parameters of class types

L
7.95

Dept of CSE, NRCM 95 Dr.Venkateswarulu, Assoc Prof

Call by value

class CallByValue {

public static void main(String args[]) {

Test ob = new Test();

int a = 15, b = 20;

System.out.print("a and b before call: “);
System.out.println(a + " " + b);

ob.meth(a, b);

System.out.print("a and b after call: ");

System.out.println(a + " " + b);

}

L
7.96

Dept of CSE, NRCM 96 Dr.Venkateswarulu, Assoc Prof

}

L
7.97

Dept of CSE, NRCM 97 Dr.Venkateswarulu, Assoc Prof

Call by refference

• As the parameter hold the same address as the argument,

changes to the object inside the method do affect the object
used by the argument:

class CallByRef {

public static void main(String args[]) {

Test ob = new Test(15, 20);

System.out.print("ob.a and ob.b before call: “);

System.out.println(ob.a + " " + ob.b);

ob.meth(ob);

System.out.print("ob.a and ob.b after call: ");

System.out.println(ob.a + " " + ob.b);

}

}

L 8.1

Dept of CSE, NRCM 98 Dr.Venkateswarulu, Assoc Prof

Recursion

• A recursive method is a method that calls itself:

1) all method parameters and local variables are
allocated on the stack

2) arguments are prepared in the corresponding
parameter positions

3) the method code is executed for the new
arguments

4) upon return, all parameters and variables are
removed from the stack

5) the execution continues immediately after the
invocation point

Dept of CSE, NRCM 99 Dr.Venkateswarulu, Assoc Prof

Example: Recursion

class Factorial {

int fact(int n) {

if (n==1) return 1;

return fact(n-1) * n;

}

}

class Recursion {

public static void main(String args[]) {

Factorial f = new Factorial();

System.out.print("Factorial of 5 is ");

Dept of CSE, NRCM 100 Dr.Venkateswarulu, Assoc Prof

System.out.println(f.fact(5));

} } L 8.2

L
8.10

Dept of CSE, NRCM 101 Dr.Venkateswarulu, Assoc Prof

String Handling

• String is probably the most commonly used class
in Java's class library. The obvious reason for this
is that strings are a very important part of
programming.

• The first thing to understand about strings is that
every string you create is actually an object of type
String. Even string constants are actually String
objects.

• For example, in the statement

System.out.println("This is a String, too");

the string "This is a String, too" is a String

L
8.10

Dept of CSE, NRCM 102 Dr.Venkateswarulu, Assoc Prof

constant

L
8.10

Dept of CSE, NRCM 103 Dr.Venkateswarulu, Assoc Prof

• Java defines one operator for String objects:

+.

• It is used to concatenate two strings. For

example, this statement

• String myString = "I" + " like " + "Java.";

results in myString containing

"I like Java."

L
8.10

Dept of CSE, NRCM 104 Dr.Venkateswarulu, Assoc Prof

• The String class contains several methods that you can
use. Here are a few. You can

• test two strings for equality by using

equals(). You can obtain the length of a string by calling
the length() method. You can obtain the character at a
specified index within a string by calling charAt(). The
general forms of these three methods are shown here:

• // Demonstrating some String methods.

class StringDemo2 {

public static void main(String args[]) {

String strOb1 = "First String";

String strOb2 = "Second String";

String strOb3 = strOb1;

System.out.println("Length of strOb1: " +

strOb1.length());

Dept of CSE, NRCM 105 Dr.Venkateswarulu, Assoc Prof

System.out.println ("Char at index 3 in strOb1: " +

strOb1.charAt(3));

if(strOb1.equals(strOb2))

System.out.println("strOb1 == strOb2");

else

System.out.println("strOb1 != strOb2");

if(strOb1.equals(strOb3))

System.out.println("strOb1 == strOb3");

else

System.out.println("strOb1 != strOb3");

} }

This program generates the following output:

Length of strOb1: 12

Char at index 3 in strOb1: s

Dept of CSE, NRCM 106 Dr.Venkateswarulu, Assoc Prof

strOb1 != strOb2

strOb1 == strOb3 L 8.6

1

Dept of CSE, NRCM 107 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING

UNIT-II

8-
10

Dept of CSE, NRCM 108 Dr.Venkateswarulu, Assoc Prof

Inheritance

• Inheritance is a fundamental object-oriented
design technique used to create and organize
reusable classes

– deriving new classes from existing classes

– the protected modifier

– creating class hierarchies

– abstract classes

– indirect visibility of inherited members

8-
10

Dept of CSE, NRCM 109 Dr.Venkateswarulu, Assoc Prof

Outline
Creating Subclasses

Overriding Methods

Class Hierarchies

Inheritance and Visibility

Designing for Inheritance

Inheritance and GUIs

8-
11

Dept of CSE, NRCM 110 Dr.Venkateswarulu, Assoc Prof

Creating a Subclass
• A class is to an Object what a blueprint is to a

house

• A class establishes the characteristics and the
behaviors of the object

• No memory space is reserved for the data
(variables)

• Classes are the plan; objects are the embodiment
of that plan

• Many houses can be built from the same blueprint

8-
11

Dept of CSE, NRCM 111 Dr.Venkateswarulu, Assoc Prof

Inheritance

• Inheritance allows a software developer to derive
a new class from an existing one

• The existing class is called the parent class, or
super class, or base class

• The derived class is called the child class or
subclass

• As the name implies, the child inherits
characteristics of the parent

8-
11

Dept of CSE, NRCM 112 Dr.Venkateswarulu, Assoc Prof

Inheritance

• That is, the child class inherits the methods

and data defined by the parent class

• We can refer to these inherited methods and

variables as if they were declared locally in the

class

8-
11

Dept of CSE, NRCM 113 Dr.Venkateswarulu, Assoc Prof

Inheritance
• Inheritance relationships are shown in a UML class

diagram using a solid arrow with an unfilled
triangular arrowhead pointing to the parent class

• Proper inheritance creates an is-a relationship,

meaning the child is a more specific version of the

parent

Car

Vehicle

8-
11

Dept of CSE, NRCM 114 Dr.Venkateswarulu, Assoc Prof

Inheritance

• A programmer can tailor a derived class as
needed by adding new variables or methods, or
by modifying the inherited ones

• Software reuse is a fundamental benefit of
inheritance

• By using existing software components to create
new ones, we capitalize on all the effort that
went into the design, implementation, and
testing of the existing software

8-
11

Dept of CSE, NRCM 115 Dr.Venkateswarulu, Assoc Prof

Deriving Subclasses
• In Java, we use the reserved word extends to

establish an inheritance relationship

class Car extends Vehicle

{

// class contents

}

• See Words.java (page 440) Listing 8.1

• See Book.java (page 441) Listing 8.2

• See Dictionary.java (page 442) Listing 8.3

8-10

Dept of CSE, NRCM 116 Dr.Venkateswarulu, Assoc Prof

8-
117

 Dept of CSE, NRCM 117 Dr.Venkateswarulu, Assoc Prof

8-
118

 Dept of CSE, NRCM 118 Dr.Venkateswarulu, Assoc Prof

8-
119

 Dept of CSE, NRCM 119 Dr.Venkateswarulu, Assoc Prof

The protected Modifier
• Visibility modifiers affect the way that class members can

be used in a child class

• Variables and methods declared with private visibility

cannot be referenced by name in a child class

• They can be referenced in the child class if they are

declared with public visibility -- but public variables violate

the principle of encapsulation

• There is a third visibility modifier that helps in inheritance

situations: protected

8-
120

 Dept of CSE, NRCM 120 Dr.Venkateswarulu, Assoc Prof

The protected Modifier
• The protected modifier allows a child

class to reference a variable or method

directly in the child class

• It provides more encapsulation than public

visibility, but is not as tightly encapsulated as

private visibility

• A protected variable is visible to any class in

the same package as the parent class

8-
121

 Dept of CSE, NRCM 121 Dr.Venkateswarulu, Assoc Prof

• The details of all Java modifiers are discussed

8-
122

 Dept of CSE, NRCM 122 Dr.Venkateswarulu, Assoc Prof

The protected Modifier
• Protected variables and methods can be

shown with a hash (#)symbol preceding

them in UML diagrams

• NOTE:

– All methods & variables (even those declared

private) are inherited by the child class

– Their definitions exist and memory is reserved

for the variables

8-
123

 Dept of CSE, NRCM 123 Dr.Venkateswarulu, Assoc Prof

– However they CANNOT be referenced by name

8-
124

 Dept of CSE, NRCM 124 Dr.Venkateswarulu, Assoc Prof

Class Diagram for Words

Book

pages : int

+ pageMessage() : void

Dictionary

- definitions : int

+ definitionMessage() : void

Words

+ main (args : String[]) : void

The super Reference

• Constructors are not inherited, even though

they have public visibility

• Yet we often want to use the parent's

constructor to set up the "parent's part" of

the object

• The super reference can be used to refer to

the parent class, and often is used to invoke

the parent's constructor

• See Words2.java (page 445) Listing 8.4
8-17

8-
126

Dept of CSE, NRCM 126 Dr.Venkateswarulu, Assoc Prof

8-
127

Dept of CSE, NRCM 127 Dr.Venkateswarulu, Assoc Prof

8-20

Dept of CSE, NRCM 128 Dr.Venkateswarulu, Assoc Prof

The super Reference
• A child’s constructor is responsible for calling

the parent’s constructor

• If the child constructor invokes the parent

(constructor) by using the super reference,

it

MUST be the first line of code of the

constructor

• The super reference can also be used to

reference other variables and methods

defined in the parent class 8-21

8-
130

Dept of CSE, NRCM 130 Dr.Venkateswarulu, Assoc Prof

Multiple Inheritance

• Java supports single inheritance, meaning that a derived class

can have only one parent class

• Multiple inheritance allows a class to be derived from two or
more classes, inheriting the members of all parents

• Collisions, such as the same variable name in two parents,

have to be resolved

• Java does not support multiple inheritance

• In most cases, the use of interfaces gives us aspects of
multiple inheritance without the overhead

8-
131

Dept of CSE, NRCM 131 Dr.Venkateswarulu, Assoc Prof

Outline
Creating Subclasses

Overriding Methods

Class Hierarchies

Inheritance and Visibility

Designing for Inheritance

Inheritance and GUIs

The Timer Class

Overriding Methods

• A child class can override the definition of an

inherited method in favor of its own

• The new method must have the same

signature as the parent's method, but can

have a different body

• The type of the object executing the method

determines which version of the method is

invoked

8-24 • See Messages.java (page 450) Listing 8.7

8-
133

Dept of CSE, NRCM 133 Dr.Venkateswarulu, Assoc Prof

8-
134

Dept of CSE, NRCM 134 Dr.Venkateswarulu, Assoc Prof

8-
135

Dept of CSE, NRCM 135 Dr.Venkateswarulu, Assoc Prof

Dept of CSE, NRCM 136 Dr.Venkateswarulu, Assoc Prof

Overriding

• A method in the parent class can be invoked

explicitly using the super reference

• If a method is declared with the final

modifier, it cannot be overridden

• The concept of overriding can be applied to

data and is called shadowing variables

• Shadowing variables should be avoided

because it tends to cause unnecessarily

c

o

n

f

u

s

i

n

g

Dept of CSE, NRCM 137 Dr.Venkateswarulu, Assoc Prof

code

8-28

Dept of CSE, NRCM 138 Dr.Venkateswarulu, Assoc Prof

Overloading vs. Overriding

• Overloading deals with multiple methods with

the same name in the same class, but with

different signatures

• Overriding deals with two methods, one in a

parent class and one in a child class, that have

the same signature

• Overloading lets you define a similar

Dept of CSE, NRCM 139 Dr.Venkateswarulu, Assoc Prof

operation in different ways for different

parameters 8-29

8-
140

Dept of CSE, NRCM 140 Dr.Venkateswarulu, Assoc Prof

RetailBusiness ServiceBusiness

Kinkos

Class Hierarchies

• A child class of one parent can be the parent

of another child, forming a class hierarchy

KMart

Macys

Business

8-
141

Dept of CSE, NRCM 141 Dr.Venkateswarulu, Assoc Prof

Class Hierarchies

• Two children of the same parent are called

siblings

• Common features should be put as high in the

hierarchy as is reasonable

• An inherited member is passed continually

down the line

• Therefore, a child class inherits from all its

8-
142

Dept of CSE, NRCM 142 Dr.Venkateswarulu, Assoc Prof

ancestor classes

The Object Class

• A class called Object is defined in the

java.lang package of the Java standard

class library

• All classes are derived from the Object class

• If a class is not explicitly defined to be the

child of an existing class, it is assumed to be

the child of the Object class

• Therefore, the Object class is the ultimate
root of all class hierarchies

8-32

8-
144

Dept of CSE, NRCM 144 Dr.Venkateswarulu, Assoc Prof

The Object Class

• The Object class contains a few useful methods,

which are inherited by all classes

• For example, the toString method is defined in

the Object class

• Every time we define the toString method, we

are actually overriding an inherited definition

• The toString method in the Object class is

defined to return a string that contains the name of

the object’s class along with some other information

8-
145

Dept of CSE, NRCM 145 Dr.Venkateswarulu, Assoc Prof

The Object Class

• The equals method of the Object class returns true
if two references are aliases

• We can override equals in any class to define
equality in some more appropriate way

• As we've seen, the String class defines the
equals method to return true if two String
objects contain the same characters

• The designers of the String class have overridden
the equals method inherited from Object in
favor of a more useful version

8-
146

Dept of CSE, NRCM 146 Dr.Venkateswarulu, Assoc Prof

Abstract Classes

• An abstract class is a placeholder in a class

hierarchy that represents a generic concept

• An abstract class cannot be instantiated

• We upsuebtlhiec mabosdtirfiaecrtabclsatsrs aPcrtodoucntthe class

heade{r to declare a class as abstract:
// contents

}

8-
147

Dept of CSE, NRCM 147 Dr.Venkateswarulu, Assoc Prof

Abstract Classes
• An abstract class often contains abstract

methods with no definitions (like an

interface)

• Unlike an interface, the abstract modifier

must be applied to each abstract method

• Also, an abstract class typically contains non-

abstract methods with full definitions

• A class declared as abstract does not have to

8-
148

Dept of CSE, NRCM 148 Dr.Venkateswarulu, Assoc Prof

contain abstract methods -- simply declaring

Abstract Classes

• The child of an abstract class must override

the abstract methods of the parent (define it),

or it too will be considered abstract

• An abstract method cannot be defined as

final or static

• The use of abstract classes is an important

element of software design – it allows us to

establish common elements in a hierarchy that

are too generic to instantiate 8-37

Interface Hierarchies
• Inheritance can be applied to interfaces as

well as classes

• That is, one interface can be derived from

another interface

• The child interface inherits all abstract

methods of the parent

• A class implementing the child interface

must define all methods from both the

ancestor and child interfaces
8-38

8-39

Visibility Revisited

• It's important to understand one subtle issue

related to inheritance and visibility

• All variables and methods of a parent class,

even private members, are inherited by its

children

• As we've mentioned, private members cannot

be referenced by name in the child class

• However, private members inherited by child

classes exist and can be referenced indirectly

Visibility Revisited

• Because the parent can refer to the private

member, the child can reference it indirectly

using its parent's methods

• The super reference can be used to refer to

the parent class, even if no object of the

parent exists

• See FoodAnalyzer.java (page 459)

Listing 8.10

• See FoodItem.java (page 460) Listing 8.181-40

8-
154

Dept of CSE, NRCM 154 Dr.Venkateswarulu, Assoc Prof

8-
155

Dept of CSE, NRCM 155 Dr.Venkateswarulu, Assoc Prof

8-
156

Dept of CSE, NRCM 156 Dr.Venkateswarulu, Assoc Prof

Designing for Inheritance

• As we've discussed, taking the time to create a

good software design reaps long-term

benefits

• Inheritance issues are an important part of an

object-oriented design

• Properly designed inheritance relationships

can contribute greatly to the elegance,

maintainabilty, and reuse of the software

8-44 • Let's summarize some of the issues regarding

Inheritance Design Issues
• Every derivation should be an is-a

relationship

• Think about the potential future of a class
hierarchy, and design classes to be reusable
and flexible

• Find common characteristics of classes and
push them as high in the class hierarchy as
appropriate

• Override methods as appropriate to tailor or
change the functionality of a child 8-45

Inheritance Design Issues

• Allow each class to manage its own data; use

the super reference to invoke the parent's

constructor to set up its data

• Even if there are no current uses for them,

override general methods such as toString

and equals with appropriate definitions

• Use abstract classes to represent general

concepts that lower classes have in common

• Use visibility modifiers carefully to provide
8-46

8-47

 Dept of CSE, NRCM 160 Dr.Venkateswarulu, Assoc Prof

Restricting Inheritance

• The final modifier can be used to curtail inheritance

• If the final modifier is applied to a method, then
that method cannot be overridden in any descendent
classes

• If the final modifier is applied to an entire class,
then that class cannot be used to derive any children at
all

– Thus, an abstract class cannot be declared as final

• These are key design decisions, establishing that a
method or class should be used as is

16
1

V Dept of CSE, NRCM 161 Dr.Venkateswarulu, Assoc Prof

Defining a Package
A package is both a naming and a visibility control

mechanism:

1) divides the name space into disjoint subsets It is
possible to define classes within a package that are
not accessible by code outside the package.

2) controls the visibility of classes and their members
It is possible to define class members that are only
exposed to other members of the same package.

Same-package classes may have an intimate
knowledge of each other, but not expose that
knowledge to other packages

16
2

V Dept of CSE, NRCM 162 Dr.Venkateswarulu, Assoc Prof

Creating a Package

• A package statement inserted as the first line of the
source file:

package myPackage;

class MyClass1 { … }

class MyClass2 { … }

• means that all classes in this file belong to the
myPackage package.

• The package statement creates a name space where
such classes are stored.

• When the package statement is omitted, class names
are put into the default package which has no name.

50

Multiple Source Files

• Other files may include the same package

instruction:
1. package myPackage;

class MyClass1 { … }

class MyClass2 { … }

2. package myPackage;

class MyClass3{ … }
• A package may be distributed through several

source files

16
4

Dept of CSE, NRCM 164 Dr.Venkateswarulu, Assoc Prof

Packages and Directories

• Java uses file system directories to store packages.

• Consider the Java source file:

package myPackage;

class MyClass1 { … }

class MyClass2 { … }

• The byte code files MyClass1.class and
MyClass2.class must be stored in a directory
myPackage.

• Case is significant! Directory names must match
package names exactly.

16
5

Dept of CSE, NRCM 165 Dr.Venkateswarulu, Assoc Prof

Package Hierarchy
• To create a package hierarchy, separate each package

name with a dot:

package myPackage1.myPackage2.myPackage3;

• A package hierarchy must be stored accordingly in the file

system:

1) Unix myPackage1/myPackage2/myPackage3

2) Windows myPackage1\myPackage2\myPackage3

3) Macintosh myPackage1:myPackage2:myPackage3

• You cannot rename a package without renaming its

directory!

16
6

Dept of CSE, NRCM 166 Dr.Venkateswarulu, Assoc Prof

Accessing a Package

• As packages are stored in directories, how

does the Java run-time system know where to

look for packages?

• Two ways:

1) The current directory is the default start

point - if packages are stored in the current

directory or sub-directories, they will be

found.

2) Specify a directory path or paths by setting

the CLASSPATH environment variable.

16
7

Dept of CSE, NRCM 167 Dr.Venkateswarulu, Assoc Prof

CLASSPATH Variable

• CLASSPATH - environment variable that points to the

root directory of the system’s package hierarchy.

• Several root directories may be specified in CLASSPATH,

• e.g. the current directory and the C:\raju\myJava

directory:

.;C:\raju\myJava

• Java will search for the required packages by looking up

subsequent directories described in the CLASSPATH

variable.

16
8

Dept of CSE, NRCM 168 Dr.Venkateswarulu, Assoc Prof

Finding Packages

• Consider this package statement:

package myPackage;

• In order for a program to find myPackage, one
of the following must be true:

1) program is executed from the directory
immediately above myPackage (the parent of
myPackage directory)

2) CLASSPATH must be set to include the path
to myPackage

16
9

Dept of CSE, NRCM 169 Dr.Venkateswarulu, Assoc Prof

Example: Package
package MyPack;

class Balance {

String name;

double bal;

Balance(String n, double b) {

name = n; bal = b;

}

void show() {

if (bal<0) System.out.print("-->> ");

System.out.println(name + ": $" + bal);

} }

17
0

Dept of CSE, NRCM 170 Dr.Venkateswarulu, Assoc Prof

Example: Package

class AccountBalance {

public static void main(String args[]) {

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

current[1] = new Balance("Will Tell", 157.02);

current[2] = new Balance("Tom Jackson", -12.33);

for (int i=0; i<3; i++) current[i].show();

}

}

17
1

Dept of CSE, NRCM 171 Dr.Venkateswarulu, Assoc Prof

Example: Package

• Save, compile and execute:

1) call the file AccountBalance.java

2) save the file in the directory MyPack

3) compile; AccountBalance.class should be also in
MyPack

4) set access to MyPack in CLASSPATH variable, or
make the parent of MyPack your current directory

5) run: java MyPack.AccountBalance

• Make sure to use the package-qualified class name.

17
2

Dept of CSE, NRCM 172 Dr.Venkateswarulu, Assoc Prof

Importing of Packages

• Since classes within packages must be fully-

qualified with their package names, it would
be tedious to always type long dot-separated
names.

• The import statement allows to use classes or
whole packages directly.

• Importing of a concrete class:

import myPackage1.myPackage2.myClass;

• Importing of all classes within a package:

import myPackage1.myPackage2.*;

60

Import Statement
• The import statement occurs immediately after the package

statement and before the class statement:

package myPackage;

• import otherPackage1;otherPackage2.otherClass;

class myClass { … }

• The Java system accepts this import statement by default:

import java.lang.*;

• This package includes the basic language functions. Without
such functions, Java is of no much use.

17
4

Dept of CSE, NRCM 174 Dr.Venkateswarulu, Assoc Prof

Example: Packages 1
• A package MyPack with one public class Balance.

The class has two same-package variables: public constructor
and a public show method.

package MyPack;

public class Balance {

String name;

double bal;

public Balance(String n, double b) {

name = n; bal = b;

}

public void show() {

if (bal<0) System.out.print("-->> ");

System.out.println(name + ": $" + bal);

}}

17
5

Dept of CSE, NRCM 175 Dr.Venkateswarulu, Assoc Prof

Example: Packages 2

The importing code has access to the public class Balance of

the MyPack package and its two public members:

import MyPack.*;

class TestBalance {

public static void main(String args[]) {

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show();

}

}

17
6

Dept of CSE, NRCM 176 Dr.Venkateswarulu, Assoc Prof

Java Source File

• Finally, a Java source file consists of:

1) a single package instruction (optional)

2) several import statements (optional)

3) a single public class declaration (required)

4) several classes private to the package

(optional)

• At the minimum, a file contains a single public

class declaration.

17
7

Dept of CSE, NRCM 177 Dr.Venkateswarulu, Assoc Prof

Differences between classes and interfaces

• Interfaces are syntactically similar to classes,

but they lack instance variables, and their

methods are declared without any body.

• One class can implement any number of

interfaces.

• Interfaces are designed to support dynamic

method resolution at run time.

17
8

Dept of CSE, NRCM 178 Dr.Venkateswarulu, Assoc Prof

• Interface is little bit like a class... but interface is lack in

instance variables....that's u can't create object for it.....

• Interfaces are developed to support multiple inheritance...

• The methods present in interfaces r pure abstract..

• The access specifiers public,private,protected are possible
with classes, but the interface uses only one spcifier public.....

• interfaces contains only the method declarations.... no
definitions.......

• A interface defines, which method a class has to implement.
This is way - if you want to call a method defined by an
interface - you don't need to know the exact class type of an
object, you only need to know that it implements a specific
interface.

• Another important point about interfaces is that a class can
implement multiple interfaces.

17
9

Dept of CSE, NRCM 179 Dr.Venkateswarulu, Assoc Prof

Defining an interface

• Using interface, we specify what a class must

do, but not how it does this.

• An interface is syntactically similar to a class,

but it lacks instance variables and its methods

are declared without any body.

• An interface is defined with an interface

keyword.

	JAVA PROGRAMMING
	Before Java: C++
	Java: History
	Java: History (contd.)
	Java History

	The Java Buzzwords
	Data Types
	Variables
	Variables
	Basic Variable Declaration
	Variable Declaration
	Variable Scope
	Variable Lifetime
	Arrays
	Array Declaration

	Array Creation
	Array Indexing
	Array Initialization
	Multidimensional Arrays
	Operators Types

	Arithmetic assignments
	Relational operator
	Expressions

	Control Statements
	Selection Statements
	Iteration Statements
	Jump Statements
	Type Conversion
	Type Casting
	Simple Java Program
	What is an Object?
	What is a Class?
	Object Creation
	Object Destruction
	Class
	Class Definition
	Example: Class Usage
	Constructor
	Example: Constructor
	Parameterized Constructor
	Methods
	Example: Method
	Parameterized Method
	Access Control: Data Hiding and
	Access Modifiers: Public, Private,

	Visibility
	Keyword this
	Keyword this
	Garbage Collection
	finalize() Method
	Method Overloading
	Example: Overloading

	Constructor Overloading
	Parameter Passing

	Call by value
	Call by refference
	Recursion
	Example: Recursion

	Inheritance
	Outline
	Creating a Subclass
	Inheritance
	Inheritance
	Inheritance
	Inheritance
	Deriving Subclasses
	The protected Modifier
	The protected Modifier
	The protected Modifier
	Class Diagram for Words
	The super Reference
	The super Reference
	Multiple Inheritance
	Outline
	Overriding Methods
	Overriding
	Overloading vs. Overriding
	Class Hierarchies
	Class Hierarchies
	The Object Class
	The Object Class
	The Object Class
	Abstract Classes
	Abstract Classes
	Abstract Classes
	Interface Hierarchies
	Visibility Revisited
	Visibility Revisited
	Designing for Inheritance
	Inheritance Design Issues
	Inheritance Design Issues
	Restricting Inheritance
	Creating a Package
	Package Hierarchy
	Accessing a Package

	CLASSPATH Variable
	Finding Packages
	Example: Package
	Example: Package
	Example: Package
	Importing of Packages
	Import Statement
	Example: Packages 1
	Java Source File

